EconPapers    
Economics at your fingertips  
 

Additive models with autoregressive symmetric errors based on penalized regression splines

Rodrigo A. Oliveira () and Gilberto A. Paula ()
Additional contact information
Rodrigo A. Oliveira: Universidade Federal de Goiás
Gilberto A. Paula: Universidade de São Paulo

Computational Statistics, 2021, vol. 36, issue 4, No 5, 2435-2466

Abstract: Abstract In this paper additive models with p-order autoregressive conditional symmetric errors based on penalized regression splines are proposed for modeling trend and seasonality in time series. The aim with this kind of approach is try to model the autocorrelation and seasonality properly to assess the existence of a significant trend. A backfitting iterative process jointly with a quasi-Newton algorithm are developed for estimating the additive components, the dispersion parameter and the autocorrelation coefficients. The effective degrees of freedom concerning the fitting are derived from an appropriate smoother. Inferential results and selection model procedures are proposed as well as some diagnostic methods, such as residual analysis based on the conditional quantile residual and sensitivity studies based on the local influence approach. Simulations studies are performed to assess the large sample behavior of the maximum penalized likelihood estimators. Finally, the methodology is applied for modeling the daily average temperature of San Francisco city from January 1995 to April 2020.

Keywords: Cubic splines; Cyclic splines; Daily temperature; Model checking; Penalized likelihood; Student-t models; Robust estimation; 62G08; 62J05; 62J20 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s00180-021-01106-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:36:y:2021:i:4:d:10.1007_s00180-021-01106-2

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-021-01106-2

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:36:y:2021:i:4:d:10.1007_s00180-021-01106-2