EconPapers    
Economics at your fingertips  
 

A new approach in model selection for ordinal target variables

Elena Ballante, Silvia Figini () and Pierpaolo Uberti ()
Additional contact information
Elena Ballante: University of Pavia
Silvia Figini: University of Pavia
Pierpaolo Uberti: University of Genova

Computational Statistics, 2022, vol. 37, issue 1, No 3, 43-56

Abstract: Abstract Multi-class predictive models are generally evaluated averaging binary classification indicators without a distinction between nominal and ordinal dependent variables. This paper introduces a novel approach to assess performances of predictive models characterized by an ordinal target variable and a new index for model evaluation is proposed. The new index satisfies mathematical properties and it can be applied to the evaluation of parametric and non parametric models. In order to show how our performance indicator works, empirical evidences obtained on toy examples and simulated data are provided. On the basis of the results achieved, we underline that our approach can be a more suitable criterion for model selection than the performance indexes currently suggested in the literature.

Keywords: Classification; Ordinal data; Performance index; Model assessment (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s00180-021-01112-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:37:y:2022:i:1:d:10.1007_s00180-021-01112-4

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-021-01112-4

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:37:y:2022:i:1:d:10.1007_s00180-021-01112-4