EconPapers    
Economics at your fingertips  
 

A hierarchical clustering method for random intervals based on a similarity measure

Ana Belén Ramos-Guajardo ()
Additional contact information
Ana Belén Ramos-Guajardo: University of Oviedo

Computational Statistics, 2022, vol. 37, issue 1, No 9, 229-261

Abstract: Abstract A new clustering method for random intervals that are measured in the same units over the same group of individuals is provided. It takes into account the similarity degree between the expected values of the random intervals that can be analyzed by means of a two-sample similarity bootstrap test. Thus, the expectations of each pair of random intervals are compared through that test and a p-value matrix is finally obtained. The suggested clustering algorithm considers such a matrix where each p-value can be seen at the same time as a kind of similarity between the random intervals. The algorithm is iterative and includes an objective stopping criterion that leads to statistically similar clusters that are different from each other. Some simulations to show the empirical performance of the proposal are developed and the approach is applied to two real-life situations.

Keywords: Random intervals; Similarity measure; Bootstrap test; p-values matrix; Clustering approach (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00180-021-01121-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:37:y:2022:i:1:d:10.1007_s00180-021-01121-3

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-021-01121-3

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:37:y:2022:i:1:d:10.1007_s00180-021-01121-3