An efficient parallel block coordinate descent algorithm for large-scale precision matrix estimation using graphics processing units
Young-Geun Choi,
Seunghwan Lee and
Donghyeon Yu ()
Additional contact information
Young-Geun Choi: Sookmyung Women’s University
Seunghwan Lee: Inha University
Donghyeon Yu: Inha University
Computational Statistics, 2022, vol. 37, issue 1, No 18, 419-443
Abstract:
Abstract Large-scale sparse precision matrix estimation has attracted wide interest from the statistics community. The convex partial correlation selection method (CONCORD) developed by Khare et al. (J R Stat Soc Ser B (Stat Methodol) 77(4):803–825, 2015) has recently been credited with some theoretical properties for estimating sparse precision matrices. The CONCORD obtains its solution by a coordinate descent algorithm (CONCORD-CD) based on the convexity of the objective function. However, since a coordinate-wise update in CONCORD-CD is inherently serial, a scale-up is nontrivial. In this paper, we propose a novel parallelization of CONCORD-CD, namely, CONCORD-PCD. CONCORD-PCD partitions the off-diagonal elements into several groups and updates each group simultaneously without harming the computational convergence of CONCORD-CD. We guarantee this by employing the notion of edge coloring in graph theory. Specifically, we establish a nontrivial correspondence between scheduling the updates of the off-diagonal elements in CONCORD-CD and coloring the edges of a complete graph. It turns out that CONCORD-PCD simultanoeusly updates off-diagonal elements in which the associated edges are colorable with the same color. As a result, the number of steps required for updating off-diagonal elements reduces from $$p(p-1)/2$$ p ( p - 1 ) / 2 to $$p-1$$ p - 1 (for even p) or p (for odd p), where p denotes the number of variables. We prove that the number of such steps is irreducible In addition, CONCORD-PCD is tailored to single-instruction multiple-data (SIMD) parallelism. A numerical study shows that the SIMD-parallelized PCD algorithm implemented in graphics processing units boosts the CONCORD-CD algorithm multiple times. The method is available in the R package pcdconcord.
Keywords: CONCORD; Edge coloring; Parallel coordinate descent; Graphical model; GPU-parallel computation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s00180-021-01127-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:37:y:2022:i:1:d:10.1007_s00180-021-01127-x
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-021-01127-x
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().