EconPapers    
Economics at your fingertips  
 

Computational advances for spatio-temporal multivariate environmental models

Claudia Cappello, Sandra De Iaco () and Monica Palma
Additional contact information
Claudia Cappello: Università del Salento
Sandra De Iaco: Università del Salento
Monica Palma: Università del Salento

Computational Statistics, 2022, vol. 37, issue 2, No 5, 670 pages

Abstract: Abstract In multivariate Geostatistics, the linear coregionalization model (LCM) has been widely used over the last decades, in order to describe the spatial dependence which characterizes two or more variables of interest. However, in spatio-temporal multiple modeling, the identification of the main elements of a space–time linear coregionalization model (ST-LCM), as well as of the latent structures underlying the analyzed phenomenon, represents a tough task. In this paper, some computational advances which support the selection of an ST-LCM are described, gathering all the necessary steps which allow the analyst to easily and properly detect the basic space–time components for the phenomenon under study. The implemented algorithm is applied on space–time air quality data measured in Scotland in 2017.

Keywords: Space–time multivariate covariance models; Air quality variables; Statistical tests; Linear coregionalization model (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00180-021-01132-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:37:y:2022:i:2:d:10.1007_s00180-021-01132-0

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-021-01132-0

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:37:y:2022:i:2:d:10.1007_s00180-021-01132-0