Graphical tests of independence for general distributions
Jiří Dvořák () and
Tomáš Mrkvička ()
Additional contact information
Jiří Dvořák: Charles University
Tomáš Mrkvička: University of South Bohemia
Computational Statistics, 2022, vol. 37, issue 2, No 6, 699 pages
Abstract:
Abstract We propose two model-free, permutation-based tests of independence between a pair of random variables. The tests can be applied to samples from any bivariate distribution: continuous, discrete, or mixture of those, with light tails or heavy tails. Apart from the broad applicability of the tests, their main benefit lies in the graphical interpretation of the test outcome: in case of rejection of the null hypothesis of independence, the combinations of quantiles in the two marginals are indicated for which the deviation from independence is significant. This information can be used to gain more insight into the properties of the observed data and as guidance for proposing more complicated models and hypotheses. We assess the performance of the proposed tests in a simulation study and compare them with several well-established tests of independence. We observe that for monotone dependence structures, the proposed tests are competitive with most benchmark methods. In contrast, for non-monotone dependence structures, the proposed tests usually outperform the benchmark tests. Furthermore, we illustrate the use of the tests and the interpretation of the test outcome in two real datasets consisting of meteorological reports (daily mean temperature and total daily precipitation, having an atomic component at 0 millimeters) and road accidents reports (type of road and the weather conditions, both variables having categorical distribution).
Keywords: Independence; Permutation test; Visualization; Empirical distribution function; Intensity function; 62G10; 62H15 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-021-01134-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:37:y:2022:i:2:d:10.1007_s00180-021-01134-y
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-021-01134-y
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().