Methods for checking the Markov condition in multi-state survival data
Gustavo Soutinho () and
Luís Meira-Machado ()
Additional contact information
Gustavo Soutinho: Institute of Public Health of the University of Porto (ISPUP)
Luís Meira-Machado: University of Minho - School of Sciences
Computational Statistics, 2022, vol. 37, issue 2, No 10, 780 pages
Abstract:
Abstract The inference in multi-state models is traditionally performed under a Markov assumption that claims that past and future of the process are independent given the present state. This assumption has an important role in the estimation of the transition probabilities. When the multi-state model is Markovian, the Aalen–Johansen estimator gives consistent estimators of the transition probabilities but this is no longer the case when the process is non-Markovian. Usually, this assumption is checked including covariates depending on the history. Since the landmark methods of the transition probabilities are free of the Markov assumption, they can also be used to introduce such tests by measuring their discrepancy to Markovian estimators. In this paper, we introduce tests for the Markov assumption and compare them with the usual approach based on the analysis of covariates depending on history through simulations. The methods are also compared with more recent and competitive approaches. Three real data examples are included for illustration of the proposed methods.
Keywords: Censoring; Markov assumption; Multi-state models; Transition probabilities (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-021-01139-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:37:y:2022:i:2:d:10.1007_s00180-021-01139-7
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-021-01139-7
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().