Stochastic functional linear models and Malliavin calculus
Ruzong Fan () and
Hong-Bin Fang
Additional contact information
Ruzong Fan: Georgetown University Medical Center
Hong-Bin Fang: Georgetown University Medical Center
Computational Statistics, 2022, vol. 37, issue 2, No 3, 611 pages
Abstract:
Abstract In this article, we study stochastic functional linear models (SFLM) driven by an underlying square integrable stochastic process X(t) which is generated by a standard Brownian motion. Utilizing the magnificent Itô integrals and Malliavin calculus, X(t) is expanded into a summation of orthogonal multiple integrals, i.e., Wiener-Itô chaos expansions, which is the counterpart of the Taylor expansion of deterministic functions. Based on the expansion, we show that the fourth moments of linear functionals of underlying stochastic process X(t) are bounded by the square of their second moments when X(t) is a finite linear combination of multiple Itô integrals. Therefore, an optimal minimax convergence rate in mean prediction risk of SFLM is valid if eigenvalues of related linear operators are of order $$k^{-2r}$$ k - 2 r by using results in literature when the underlying process X(t) is a linear combination of multiple Itô integrals. A sufficient and necessary condition of finite fourth moment of random functions of multiple Itô integrals is proved, which is a key condition in methodology and convergence rates of functional linear regressions. Our results show that the optimal minimax convergence rate in mean prediction risk can be applied to the class of linear combination of multiple Itô integrals which are not necessarily Gaussian processes. Moreover, the sufficient and necessary condition of finite fourth moment for multiple Itô integrals can be directly applied to show methodology and convergence rates of functional linear models. Using the theory of stochastic analysis, one may construct a reproducing kernel Hilbert space (RKHS) associated with a square integrable stochastic process to facilitate analysis of functional data.
Keywords: Itô integrals; Malliavin calculus; Wiener-Itô chaos expansions; Functional linear models; Minimax; Optimal convergence rate; Reproducing kernel Hilbert space; Smoothing splines; Sobolev space (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-021-01142-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:37:y:2022:i:2:d:10.1007_s00180-021-01142-y
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-021-01142-y
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().