Modelling the association in bivariate survival data by using a Bernstein copula
Mirza Nazmul Hasan () and
Roel Braekers
Additional contact information
Mirza Nazmul Hasan: Universiteit Hasselt
Roel Braekers: Universiteit Hasselt
Computational Statistics, 2022, vol. 37, issue 2, No 11, 815 pages
Abstract:
Abstract Bivariate or multivariate survival data arise when a sample consists of clusters of two or more subjects which are correlated. This paper considers clustered bivariate survival data which is possibly censored. Two approaches are commonly used in modelling such type of correlated data: random effect models and marginal models. A random effect model includes a frailty model and assumes that subjects are independent within a cluster conditionally on a common non-negative random variable, the so-called frailty. In contrast, the marginal approach models the marginal distribution directly and then imposes a dependency structure through copula functions. In this manuscript, Bernstein copulas are used to account for the correlation in modelling bivariate survival data. A two-stage parametric estimation method is developed to estimate in the first stage the parameters in the marginal models and in the second stage the coefficients of the Bernstein polynomials in the association. Hereby we use a penalty parameter to make the fit desirably smooth. In this aspect linear constraints are introduced to ensure uniform univariate margins and we use quadratic programming to fit the model. We perform a Simulation study and illustrate the method on a real data set.
Keywords: Bivariate survival data; Random effects; Marginal model; Frailty model; Bernstein copula (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-021-01154-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:37:y:2022:i:2:d:10.1007_s00180-021-01154-8
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-021-01154-8
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().