EconPapers    
Economics at your fingertips  
 

Bayesian analysis of mixture autoregressive models covering the complete parameter space

Davide Ravagli () and Georgi N. Boshnakov ()
Additional contact information
Davide Ravagli: The University of Manchester
Georgi N. Boshnakov: The University of Manchester

Computational Statistics, 2022, vol. 37, issue 3, No 16, 1399-1433

Abstract: Abstract Mixture autoregressive (MAR) models provide a flexible way to model time series with predictive distributions which depend on the recent history of the process and are able to accommodate asymmetry and multimodality. Bayesian inference for such models offers the additional advantage of incorporating the uncertainty in the estimated models into the predictions. We introduce a new way of sampling from the posterior distribution of the parameters of MAR models which allows for covering the complete parameter space of the models, unlike previous approaches. We also propose a relabelling algorithm to deal a posteriori with label switching. We apply our new method to simulated and real datasets, discuss the accuracy and performance of our new method, as well as its advantages over previous studies. The idea of density forecasting using MCMC output is also introduced.

Keywords: Mixture autoregressive model; Stationarity; MCMC methods; Model selection; Forecasting (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00180-021-01162-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:37:y:2022:i:3:d:10.1007_s00180-021-01162-8

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-021-01162-8

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:37:y:2022:i:3:d:10.1007_s00180-021-01162-8