EconPapers    
Economics at your fingertips  
 

Markovchart: an R package for cost-optimal patient monitoring and treatment using control charts

Balázs Dobi () and András Zempléni ()
Additional contact information
Balázs Dobi: Eötvös Loránd University
András Zempléni: Eötvös Loránd University

Computational Statistics, 2022, vol. 37, issue 4, No 5, 1653-1693

Abstract: Abstract Control charts originate from industrial statistics, but are constantly seeing new areas of application, for example in health care (Thor et al. in BMJ Qual Saf 16(5):387–399, 2007. https://doi.org/10.1136/qshc.2006.022194 ; Suman and Prajapati in Int J Metrol Qual Eng, 2018. https://doi.org/10.1051/ijmqe/2018003 ). This paper is about the Markovchart package, an R implementation of generalised Markov chain-based control charts with health care applications in mind and with a focus on cost-effectiveness. The methods are based on Zempléni et al. (Appl Stoch Model Bus Ind 20(3):185–200, 2004. https://doi.org/10.1002/asmb.521 ), Dobi and Zempléni (Qual Reliab Eng Int 35(5):1379–1395, 2019a. https://doi.org/10.1002/qre.2518 , Ann Univ Sci Budapestinensis Rolando Eötvös Nomin Sect Comput 49:129–146, 2019b). The implemented ideas in the package were motivated by problems encountered by health care professionals and biostatisticians when assessing the effects and costs of different monitoring schemes and therapeutic regimens. However, the implemented generalisations may be useful in other (e.g., engineering) applications too, as they mainly revolve around the loosening of assumptions seen in traditional control chart theory. The Markovchart package is able to model processes with random shift sizes (i.e., the degradation of the patient’s health), random repair (i.e., treatment) and random time between samplings (i.e., visits) as well. The article highlights the flexibility of the methods through the modelling of different disease progression and treatment scenarios and also through an application on real-world data of diabetic patients.

Keywords: Control chart; Cost-effectiveness; Markov chain; Health care; R (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00180-021-01175-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:37:y:2022:i:4:d:10.1007_s00180-021-01175-3

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-021-01175-3

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:37:y:2022:i:4:d:10.1007_s00180-021-01175-3