The truncated g-and-h distribution: estimation and application to loss modeling
Marco Bee
Computational Statistics, 2022, vol. 37, issue 4, No 9, 1794 pages
Abstract:
Abstract The g-and-h distribution is a flexible model for skewed and/or leptokurtic data, which has been shown to be especially effective in actuarial analytics and risk management. Since in these fields data are often recorded only above a certain threshold, we introduce a left-truncated g-and-h distribution. Given the lack of an explicit density, we estimate the parameters via an Approximate Maximum Likelihood approach that uses the empirical characteristic function as summary statistics. Simulation results and an application to fire insurance losses suggest that the method works well and that the explicit consideration of truncation is strongly preferable with respect the use of the non-truncated g-and-h distribution.
Keywords: Skewness; Leptokurtosis; Simulation; Truncated distributions (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-021-01179-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:37:y:2022:i:4:d:10.1007_s00180-021-01179-z
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-021-01179-z
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().