A note on imputing squares via polynomial combination approach
Mingyang Cai () and
Gerko Vink ()
Additional contact information
Mingyang Cai: Utrecht University
Gerko Vink: Utrecht University
Computational Statistics, 2022, vol. 37, issue 5, No 5, 2185-2201
Abstract:
Abstract The polynomial combination (PC) method, proposed by Vink and Van Buuren, is a hot-deck multiple imputation method for imputation models containing squared terms. The method yields unbiased regression estimates and preserves the quadratic relationships in the imputed data for both MCAR and MAR mechanisms. However, Vink and Van Buuren never studied the coverage rate of the PC method. This paper investigates the coverage of the nominal 95% confidence intervals for the polynomial combination method and improves the algorithm to avoid the perfect prediction issue. We also compare the original and the improved PC method to the substantive model compatible fully conditional specification method proposed by Bartlett et al. and elucidate the two imputation methods’ characters.
Keywords: Multiple imputation; Missing data; Quadratic relation; Squared terms (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s00180-022-01194-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:37:y:2022:i:5:d:10.1007_s00180-022-01194-8
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-022-01194-8
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().