Tuning selection for two-scale kernel density estimators
Xinyang Yu,
Cheng Wang,
Zhongqing Yang and
Binyan Jiang ()
Additional contact information
Xinyang Yu: Hong Kong Polytechnic University
Cheng Wang: Shanghai Jiao Tong University
Zhongqing Yang: Hong Kong Polytechnic University
Binyan Jiang: Hong Kong Polytechnic University
Computational Statistics, 2022, vol. 37, issue 5, No 7, 2247 pages
Abstract:
Abstract Reducing the bias of kernel density estimators has been a classical topic in nonparametric statistics. Schucany and Sommers (1977) proposed a two-scale estimator which cancelled the lower order bias by subtracting an additional kernel density estimator with a different scale of bandwidth. Different from existing literatures that treat the scale parameter in the two-scale estimator as a static global parameter, in this paper we consider an adaptive scale (i.e., dependent on the data point) so that the theoretical mean squared error can be further reduced. Practically, both the bandwidth and the scale parameter would require tuning, using for example, cross validation. By minimizing the point-wise mean squared error, we derive an approximate equation for the optimal scale parameter, and correspondingly propose to determine the scale parameter by solving an estimated equation. As a result, the only parameter that requires tuning using cross validation is the bandwidth. Point-wise consistency of the proposed estimator for the optimal scale is established with further discussions. The promising performance of the two-scale estimator based on the adaptive variable scale is illustrated via numerical studies on density functions with different shapes.
Keywords: Bias reduction; Kernel density estimation; Point-wise estimator; Tuning parameter selection (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-022-01196-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:37:y:2022:i:5:d:10.1007_s00180-022-01196-6
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-022-01196-6
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().