The fuzzy cluster analysis for interval value using genetic algorithm and its application in image recognition
Dinh Phamtoan () and
Tai Vovan ()
Additional contact information
Dinh Phamtoan: Van Lang University
Tai Vovan: Can Tho University
Computational Statistics, 2023, vol. 38, issue 1, No 2, 25-51
Abstract:
Abstract This article proposes the genetic algorithm in fuzzy clustering problem for interval value (IGI). In this algorithm, we use the overlap divergence to assess the similarity of the intervals, and take the new index (IDB) as the objective function to build the IGI. The crossover and selection operators in IGI are modified to optimize the results in clustering. The IGI not only determines the suitable number of groups, optimizes the result of clustering but also finds the probability of assigning the elements to the established clusters. The proposed algorithm is also applied in image recognition. The convergence of the IGI is considered and illustrated by the numerical examples. The complex computations of the IGI are performed conveniently and efficiently by the built Matlab program. The experiments on the data-sets having different characteristics and elements show the reasonableness of the IGI, and its advantages overcome other algorithms.
Keywords: Fuzzy clustering; Genetic algorithm; Interval data; Overlap divergence (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s00180-022-01215-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:38:y:2023:i:1:d:10.1007_s00180-022-01215-6
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-022-01215-6
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().