Efficient computation of tight approximations to Chernoff bounds
Daniel Shiu ()
Additional contact information
Daniel Shiu: Arqit Quantum Inc.
Computational Statistics, 2023, vol. 38, issue 1, No 7, 133-147
Abstract:
Abstract Chernoff bounds are a powerful application of the Markov inequality to produce strong bounds on the tails of probability distributions. They are often used to bound the tail probabilities of sums of Poisson trials, or in regression to produce conservative confidence intervals for the parameters of such trials. The bounds provide expressions for the tail probabilities that can be inverted for a given probability/confidence to provide tail intervals. The inversions involve the solution of transcendental equations and it is often convenient to substitute approximations that can be exactly solved e.g. by the quadratic equation. In this paper we introduce approximations for the Chernoff bounds whose inversion can be exactly solved with a quadratic equation, but which are closer approximations than those adopted previously.
Keywords: Chernoff bounds; Tail distributions; Concentration inequalities; Poisson trials (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-022-01219-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:38:y:2023:i:1:d:10.1007_s00180-022-01219-2
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-022-01219-2
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().