EconPapers    
Economics at your fingertips  
 

Approximate Bayesian computation using asymptotically normal point estimates

George Karabatsos ()
Additional contact information
George Karabatsos: Departments of Educational Psychology, and Mathematics, Statistics, and Computer Sciences

Computational Statistics, 2023, vol. 38, issue 2, No 1, 568 pages

Abstract: Abstract Approximate Bayesian computation (ABC) provides inference of the posterior distribution, even for models with intractable likelihoods, by replacing the exact (intractable) model likelihood by a tractable approximate likelihood. Meanwhile, historically, the development of point-estimation methods usually precedes the development of posterior estimation methods. We propose and study new ABC methods based on asymptotically normal and consistent point-estimators of the model parameters. Specifically, for the classical ABC method, we propose and study two alternative bootstrap methods for estimating the tolerance tuning parameter, based on resampling from the asymptotic normal distribution of the given point-estimator. This tolerance estimator can be quickly computed even for any model for which it is computationally costly to sample directly from its exact likelihood, provided that its summary statistic is specified as consistent point-estimator of the model parameters with estimated asymptotic normal distribution that can typically be easily sampled from. Furthermore, this paper introduces and studies a new ABC method based on approximating the exact intractable likelihood by the asymptotic normal density of the point-estimator, motivated by the Bernstein-Von Mises theorem. Unlike the classical ABC method, this new approach does not require tuning parameters, aside from the summary statistic (the parameter point estimate). Each of the new ABC methods is illustrated and compared through a simulation study of tractable models and intractable likelihood models, and through the Bayesian intractable likelihood analysis of a real 23,000-node network dataset involving stochastic search model selection.

Keywords: Bayesian analysis; Intractable likelihood; Likelihood-free methods; Point estimation; Asymptotic normality; Bootstrap (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00180-022-01226-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:38:y:2023:i:2:d:10.1007_s00180-022-01226-3

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-022-01226-3

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:38:y:2023:i:2:d:10.1007_s00180-022-01226-3