Spatial correlation in weather forecast accuracy: a functional time series approach
Phillip A. Jang () and
David S. Matteson
Additional contact information
Phillip A. Jang: Cornell University
David S. Matteson: Cornell University
Computational Statistics, 2023, vol. 38, issue 3, No 7, 1215-1229
Abstract:
Abstract A functional time series approach is proposed for investigating spatial correlation in daily maximum temperature forecast errors for 111 cities spread across the U.S. The modelling of spatial correlation is most fruitful for longer forecast horizons, and becomes less relevant as the forecast horizon shrinks towards zero. For 6-day-ahead forecasts, the functional approach uncovers interpretable regional spatial effects, and captures the higher variance observed in inland cities versus coastal cities, as well as the higher variance observed in mountain and midwest states. The functional approach also naturally handles missing data through modelling a continuum, and can be implemented efficiently by exploiting the sparsity induced by a B-spline basis. The temporal dependence in the data is modeled through temporal dependence in functional basis coefficients. Independent first order autoregressions with generalized autoregressive conditional heteroskedasticity [AR(1)+GARCH(1,1)] and Student-t innovations work well to capture the persistence of basis coefficients over time and the seasonal heteroskedasticity reflecting higher variance in winter. Through exploiting autocorrelation in the basis coefficients, the functional time series approach also yields a method for improving weather forecasts and uncertainty quantification. The resulting method corrects for bias in the weather forecasts, while reducing the error variance.
Keywords: Functional data analysis; Spatiotemporal; Random effects; GARCH; Weather forecast data; Data Expo 2018 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s00180-023-01338-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:38:y:2023:i:3:d:10.1007_s00180-023-01338-4
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-023-01338-4
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().