Bayesian variable selection using Knockoffs with applications to genomics
Jurel K. Yap () and
Iris Ivy M. Gauran ()
Additional contact information
Jurel K. Yap: University of the Philippines Diliman
Iris Ivy M. Gauran: King Abdullah University of Science and Technology
Computational Statistics, 2023, vol. 38, issue 4, No 10, 1790 pages
Abstract:
Abstract Given the costliness of HIV drug therapy research, it is important not only to maximize true positive rate (TPR) by identifying which genetic markers are related to drug resistance, but also to minimize false discovery rate (FDR) by reducing the number of incorrect markers unrelated to drug resistance. In this study, we propose a multiple testing procedure that unifies key concepts in computational statistics, namely Model-free Knockoffs, Bayesian variable selection, and the local false discovery rate. We develop an algorithm that utilizes the augmented data-Knockoff matrix and implement Bayesian Lasso. We then identify signals using test statistics based on Markov Chain Monte Carlo outputs and local false discovery rate. We test our proposed methods against non-bayesian methods such as Benjamini–Hochberg (BHq) and Lasso regression in terms TPR and FDR. Using numerical studies, we show the proposed method yields lower FDR compared to BHq and Lasso for certain cases, such as for low and equi-dimensional cases. We also discuss an application to an HIV-1 data set, which aims to be applied analyzing genetic markers linked to drug resistant HIV in the Philippines in future work.
Keywords: Bayesian variable selection; Model-free Knockoffs; False discovery control; Drug resistant HIV-1 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-022-01283-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:38:y:2023:i:4:d:10.1007_s00180-022-01283-8
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-022-01283-8
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().