Probabilistic learning constrained by realizations using a weak formulation of Fourier transform of probability measures
Christian Soize ()
Additional contact information
Christian Soize: Université Gustave Eiffel
Computational Statistics, 2023, vol. 38, issue 4, No 14, 1879-1925
Abstract:
Abstract This paper deals with the taking into account a given target set of realizations as constraints in the Kullback–Leibler divergence minimum principle (KLDMP). We present a novel probabilistic learning algorithm that makes it possible to use the KLDMP when the constraints are not defined by a target set of statistical moments for the quantity of interest (QoI) of an uncertain/stochastic computational model, but are defined by a target set of realizations for the QoI for which the statistical moments associated with these realizations are not or cannot be estimated. The method consists in defining a functional constraint, as the equality of the Fourier transforms of the posterior probability measure and the target probability measure, and in constructing a finite representation of the weak formulation of this functional constraint. The proposed approach allows for estimating the posterior probability measure of the QoI (unsupervised case) or of the posterior joint probability measure of the QoI with the control parameter (supervised case). The existence and the uniqueness of the posterior probability measure is analyzed for the two cases. The numerical aspects are detailed in order to facilitate the implementation of the proposed method. The presented application in high dimension demonstrates the efficiency and the robustness of the proposed algorithm.
Keywords: Probabilistic learning; Realizations as targets; Statistical inverse problem; Kullback–Leibler divergence; Uncertainty quantification (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-022-01300-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:38:y:2023:i:4:d:10.1007_s00180-022-01300-w
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-022-01300-w
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().