EconPapers    
Economics at your fingertips  
 

The higher-order PLS-SEM confirmatory approach for composite indicators of football performance quality

Mattia Cefis () and Maurizio Carpita ()
Additional contact information
Mattia Cefis: University of Brescia
Maurizio Carpita: University of Brescia

Computational Statistics, 2024, vol. 39, issue 1, No 5, 93-116

Abstract: Abstract Supporting the strategic decisions of a football team’s management is becoming crucial. We create some new composite indicators to measure the performance quality, applying both Confirmatory Tetrad Analysis (CTA) and Confirmatory Composite Analysis (CCA) to a Third-Order Partial Least Squares Structural Equation Model (PLS-SEM). To do this, data provided by Electronic Arts (EA) Sports experts and available on the Kaggle data science platform has been used; in particular, the dataset was composed of 29 Key Performance Indices defined by EA Sports experts, concerning the top 5 European leagues. A PLS-SEM for each player’s role was developed, relying on the most recent season, 2021/2022. In order to improve each model, a CTA to evaluate the nature of the constructs (formative or reflective) and a CCA were applied. The results underline how some sub-areas of performance have different significance weights depending on the player’s role; as concurrent and predictive analysis, our third-order Player Indicator overall was compared with the existing EA overall and with some performance quality proxies, such as the player’s market value and wage, showing interesting and consistent relations.

Keywords: Confirmatory tetrad analysis; Confirmatory composite analysis; Football analytics; Performance quality (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00180-022-01295-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:39:y:2024:i:1:d:10.1007_s00180-022-01295-4

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-022-01295-4

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:compst:v:39:y:2024:i:1:d:10.1007_s00180-022-01295-4