EconPapers    
Economics at your fingertips  
 

Computer algorithms of lower-order confounding in regular designs

Zhi Li () and Zhiming Li ()
Additional contact information
Zhi Li: Xinjiang University
Zhiming Li: Xinjiang University

Computational Statistics, 2024, vol. 39, issue 2, No 11, 653-676

Abstract: Abstract In the design of experiments, an optimal design should minimize the confounding between factorial effects, especially main effects and two-factor interaction effects. The general minimum lower-order confounding (GMC) criterion can be used to choose optimal regular designs based on the aliased component-number pattern. This paper aims to study the confounding properties of lower-order effects and provide several computer algorithms to calculate the lower-order confounding in regular designs. We provide a search algorithm to obtain GMC designs. Through python software, we conduct these algorithms. Some examples are analyzed to illustrate the effectiveness of the proposed algorithms.

Keywords: Regular design; Aliased component-number pattern; General minimum lower-order confounding criterion; Computer algorithm (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00180-022-01315-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:39:y:2024:i:2:d:10.1007_s00180-022-01315-3

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-022-01315-3

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:compst:v:39:y:2024:i:2:d:10.1007_s00180-022-01315-3