Improving upon the effective sample size based on Godambe information for block likelihood inference
Rahul Mukerjee ()
Additional contact information
Rahul Mukerjee: Indian Institute of Management Calcutta
Computational Statistics, 2024, vol. 39, issue 2, No 20, 904 pages
Abstract:
Abstract We consider the effective sample size, based on Godambe information, for block likelihood inference which is an attractive and computationally feasible alternative to full likelihood inference for large correlated datasets. With reference to a Gaussian random field having a constant mean, we explore how the choice of blocks impacts this effective sample size. This is done by introducing a column-wise blocking method which spreads out the spatial points within each block, instead of keeping them close together as the existing row-wise blocking method does. It is seen that column-wise blocking can lead to considerable gains in effective sample size and efficiency compared to row-wise blocking, while retaining computational simplicity. Analytical results in this direction are obtained under the AR (1) model. The insights so found facilitate the study of other one-dimensional correlation models as well as correlation models on a plane, where closed form expressions are intractable. Simulations are seen to provide support to our conclusions.
Keywords: AR (1) model; Column-wise blocking; Kronecker correlation; Matérn model; Row-wise blocking (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-023-01328-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:39:y:2024:i:2:d:10.1007_s00180-023-01328-6
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-023-01328-6
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().