Predictive stability criteria for penalty selection in linear models
Dean Dustin (),
Bertrand Clarke () and
Jennifer Clarke ()
Additional contact information
Dean Dustin: University of Nebraska, Lincoln
Bertrand Clarke: University of Nebraska, Lincoln
Jennifer Clarke: University of Nebraska, Lincoln
Computational Statistics, 2024, vol. 39, issue 3, No 7, 1280 pages
Abstract:
Abstract Choosing a shrinkage method can be done by selecting a penalty from a list of pre-specified penalties or by constructing a penalty based on the data. If a list of penalties for a class of linear models is given, we introduce a predictive stability criterion based on data perturbation to select a shrinkage method from the list. Simulation studies show that our predictive method identifies shrinkage methods that usually agree with existing literature and help explain heuristically when a given shrinkage method can be expected to perform well. If the preference is to construct a penalty customized for a given problem, then we propose a technique based on genetic algorithms, again using a predictive criterion. We find that, in general, a custom penalty never performs worse than any commonly used penalties and there are cases the custom penalty reduces to a recognizable penalty. Since penalty selection is mathematically equivalent to prior selection, our method also constructs priors. Our methodology allows us to observe that the oracle property typically holds for penalties that satisfy basic regularity conditions and therefore is not restrictive enough to play a direct role in penalty selection. In addition, our methodology, can be immediately applied to real data problems, and permits us to take model mis-specification into account.
Keywords: Prediction; Penalized regression; Shrinkage; Oracle property; Penalty selection; Prior selection; Genetic algorithm; Evolutionary computation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-023-01342-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:39:y:2024:i:3:d:10.1007_s00180-023-01342-8
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-023-01342-8
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().