Goodness-of-fit procedure for gamma processes
Ghislain Verdier ()
Additional contact information
Ghislain Verdier: UNIV PAU & PAYS ADOUR / E2S UPPA, IPRA
Computational Statistics, 2024, vol. 39, issue 5, No 9, 2623-2650
Abstract:
Abstract Gamma processes are commonly used for modelling the accumulative deterioration of systems, in many fields. However, given a series of observations, it is not always easy to affirm that the choice of a gamma process modelling is a good choice. In particular, it would be of great interest to have a statistical test, i.e. a goodness-of-fit test, to answer this question. In this paper, a practical procedure combining three statistical tests is firstly proposed, whose aim is to reject the gamma process modelling as soon as the observations are clearly in contradiction with the basic properties of a homogeneous gamma process, observed with periodic inspections: stationarity, independence and gamma distribution for the increments. The procedure is then extended to non-homogeneous gamma process and aperiodic inspection times. The efficiency of the approach is investigated through numerical simulations, and on real data.
Keywords: Gamma process; Gamma distribution; Goodness-of-fit; Independence; Stationarity (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-023-01402-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:39:y:2024:i:5:d:10.1007_s00180-023-01402-z
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-023-01402-z
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().