Estimation and prediction with data quality indexes in linear regressions
P. Chatelain () and
X. Milhaud
Additional contact information
P. Chatelain: Univ Lyon, UCBL
X. Milhaud: Aix-Marseille Université
Computational Statistics, 2024, vol. 39, issue 6, No 20, 3373-3404
Abstract:
Abstract Despite many statistical applications brush the question of data quality aside, it is a fundamental concern inherent to external data collection. In this paper, data quality relates to the confidence one can have about the covariate values in a regression framework. More precisely, we study how to integrate the information of data quality given by a $$(n \times p)$$ ( n × p ) -matrix, with n the number of individuals and p the number of explanatory variables. In this view, we suggest a latent variable model that drives the generation of the covariate values, and introduce a new algorithm that takes all these information into account for prediction. Our approach provides unbiased estimators of the regression coefficients, and allows to make predictions adapted to some given quality pattern. The usefulness of our procedure is illustrated through simulations and real-life applications. Kindly check and confirm whether the corresponding author is correctly identified.Yes
Keywords: Credibility; Quality index; Regression (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-023-01441-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:39:y:2024:i:6:d:10.1007_s00180-023-01441-6
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-023-01441-6
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().