Robust Bayesian cumulative probit linear mixed models for longitudinal ordinal data
Kuo-Jung Lee (),
Ray-Bing Chen () and
Keunbaik Lee ()
Additional contact information
Kuo-Jung Lee: National Cheng Kung University
Ray-Bing Chen: National Cheng Kung University
Keunbaik Lee: Sungkyunkwan University
Computational Statistics, 2025, vol. 40, issue 1, No 18, 468 pages
Abstract:
Abstract Longitudinal studies have been conducted in various fields, including medicine, economics and the social sciences. In this paper, we focus on longitudinal ordinal data. Since the longitudinal data are collected over time, repeated outcomes within each subject may be serially correlated. To address both the within-subjects serial correlation and the specific variance between subjects, we propose a Bayesian cumulative probit random effects model for the analysis of longitudinal ordinal data. The hypersphere decomposition approach is employed to overcome the positive definiteness constraint and high-dimensionality of the correlation matrix. Additionally, we present a hybrid Gibbs/Metropolis-Hastings algorithm to efficiently generate cutoff points from truncated normal distributions, thereby expediting the convergence of the Markov Chain Monte Carlo (MCMC) algorithm. The performance and robustness of our proposed methodology under misspecified correlation matrices are demonstrated through simulation studies under complete data, missing completely at random (MCAR), and missing at random (MAR). We apply the proposed approach to analyze two sets of actual ordinal data: the arthritis dataset and the lung cancer dataset. To facilitate the implementation of our method, we have developed BayesRGMM, an open-source R package available on CRAN, accompanied by comprehensive documentation and source code accessible at https://github.com/kuojunglee/BayesRGMM/ .
Keywords: Correlation matrix; Hypersphere decomposition; MCMC; Random effects (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-024-01499-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:40:y:2025:i:1:d:10.1007_s00180-024-01499-w
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-024-01499-w
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().