FPDclustering: a comprehensive R package for probabilistic distance clustering based methods
Cristina Tortora () and
Francesco Palumbo ()
Additional contact information
Cristina Tortora: San José State University
Francesco Palumbo: University of Naples Federico II
Computational Statistics, 2025, vol. 40, issue 2, No 22, 1123-1146
Abstract:
Abstract Data clustering has a long history and refers to a vast range of models and methods that exploit the ever-more-performing numerical optimization algorithms and are designed to find homogeneous groups of observations in data. In this framework, the probability distance clustering (PDC) family methods offer a numerically effective alternative to model-based clustering methods and a more flexible opportunity in the framework of geometric data clustering. Given n J-dimensional data vectors arranged in a data matrix and the number K of clusters, PDC maximizes the joint density function that is defined as the sum of the products between the distance and the probability, both of which are measured for each data vector from each center. This article shows the capabilities of the PDC family, illustrating the R package FPDclustering.
Keywords: Probabilistic distance clustering; Soft clustering; Mixed-type data (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-024-01490-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:40:y:2025:i:2:d:10.1007_s00180-024-01490-5
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-024-01490-5
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().