EconPapers    
Economics at your fingertips  
 

Expectile regression averaging method for probabilistic forecasting of electricity prices

Joanna Janczura

Computational Statistics, 2025, vol. 40, issue 2, No 4, 683-700

Abstract: Abstract In this paper we propose a new method for probabilistic forecasting of electricity prices. It is based on averaging point forecasts from different models combined with expectile regression. We show that deriving the predicted distribution in terms of expectiles, might be in some cases advantageous to the commonly used quantiles. We apply the proposed method to the day-ahead electricity prices from the German market and compare its accuracy with the Quantile Regression Averaging method and quantile- as well as expectile-based historical simulation. The obtained results indicate that using the expectile regression improves the accuracy of the probabilistic forecasts of electricity prices, but a variance stabilizing transformation should be applied prior to modelling.

Keywords: Electricity market; Expectile regression; Probabilistic forecast; Forecast averaging (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00180-024-01508-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:40:y:2025:i:2:d:10.1007_s00180-024-01508-y

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-024-01508-y

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-06
Handle: RePEc:spr:compst:v:40:y:2025:i:2:d:10.1007_s00180-024-01508-y