Empirical likelihood change point detection in quantile regression models
Suthakaran Ratnasingam () and
Ramadha D. Piyadi Gamage
Additional contact information
Suthakaran Ratnasingam: California State University, San Bernardino
Ramadha D. Piyadi Gamage: Western Washington University
Computational Statistics, 2025, vol. 40, issue 2, No 17, 999-1020
Abstract:
Abstract Quantile regression is an extension of linear regression which estimates a conditional quantile of interest. In this paper, we propose an empirical likelihood-based non-parametric procedure to detect structural changes in the quantile regression models. Further, we have modified the proposed smoothed empirical likelihood-based method using adjusted smoothed empirical likelihood and transformed smoothed empirical likelihood techniques. We have shown that under the null hypothesis, the limiting distribution of the smoothed empirical likelihood ratio test statistic is identical to that of the classical parametric likelihood. Simulations are conducted to investigate the finite sample properties of the proposed methods. Finally, to demonstrate the effectiveness of the proposed method, it is applied to urinary Glycosaminoglycans (GAGs) data to detect structural changes.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-024-01526-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:40:y:2025:i:2:d:10.1007_s00180-024-01526-w
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-024-01526-w
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().