Profile transformations for reciprocal averaging and singular value decomposition
Ting-Wu Wang (),
Eric J. Beh,
Rosaria Lombardo and
Ian W. Renner
Additional contact information
Ting-Wu Wang: University of Newcastle
Eric J. Beh: University of Wollongong
Rosaria Lombardo: University of Campania
Ian W. Renner: University of Newcastle
Computational Statistics, 2025, vol. 40, issue 3, No 4, 1217-1251
Abstract:
Abstract Power transformations of count data, including cell frequencies of a contingency table, have been well understood for nearly 100 years, with much of the attention focused on the square root transformation. Over the past 15 years, this topic has been the focus of some new insights into areas of correspondence analysis where two forms of power transformation have been discussed. One type considers the impact of raising the joint proportions of the cell frequencies of a table to a known power while the other examines the power transformation of the relative distribution of the cell frequencies. While the foundations of the graphical features of correspondence analysis rest with the numerical algorithms like reciprocal averaging, and other analogous techniques, discussions of the role of power transformations in reciprocal averaging have not been described. Therefore, this paper examines this link where a power transformation is applied to the cell frequencies of a two-way contingency table. In doing so, we show that reciprocal averaging can be performed under such a transformation to obtain row and column scores that provide the maximum association between the variables and the greatest discrimination between the categories. Finally, we discuss the connection between performing reciprocal averaging and singular value decomposition under this type of power transformation. The R function, powerRA.exe is included in the Appendix and performs reciprocal averaging of a power transformation of the cell frequencies of a two-way contingency table.
Keywords: Reciprocal averaging; Canonical correlation analysis; Power transformations (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-024-01517-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:40:y:2025:i:3:d:10.1007_s00180-024-01517-x
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-024-01517-x
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().