Generalized linear model based on latent factors and supervised components
Julien Gibaud (),
Xavier Bry and
Catherine Trottier
Additional contact information
Julien Gibaud: Université de Montpellier
Xavier Bry: Université de Montpellier
Catherine Trottier: Université de Montpellier
Computational Statistics, 2025, vol. 40, issue 3, No 13, 1475-1516
Abstract:
Abstract In a context of component-based multivariate modeling we propose to model the residual dependence of the responses. Each response of a response vector is assumed to depend, through a Generalized Linear Model, on a set of explanatory variables. The vast majority of explanatory variables are partitioned into conceptually homogeneous variable groups, viewed as explanatory themes. Variables in themes are supposed many and some of them are highly correlated or even collinear. Thus, generalized linear regression demands dimension reduction and regularization with respect to each theme. Besides them, we consider a small set of “additional” covariates not conceptually linked to the themes, and demanding no regularization. Supervised Component Generalized Linear Regression proposed to both regularize and reduce the dimension of the explanatory space by searching each theme for an appropriate number of orthogonal components, which both contribute to predict the responses and capture relevant structural information in themes. In this paper, we introduce random latent variables (a.k.a. factors) so as to model the covariance matrix of the linear predictors of the responses conditional on the components. To estimate the model, we present an algorithm combining supervised component-based model estimation with factor model estimation. This methodology is tested on simulated data and then applied to an agricultural ecology dataset.
Keywords: EM algorithm; Factor model; Generalized linear latent variable model; Multivariate generalized linear model; Supervised components (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-024-01544-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:40:y:2025:i:3:d:10.1007_s00180-024-01544-8
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-024-01544-8
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().