A copula-based Bayesian framework for doping detection
Nina Deliu () and
Brunero Liseo ()
Additional contact information
Nina Deliu: Sapienza Università di Roma
Brunero Liseo: Sapienza Università di Roma
Computational Statistics, 2025, vol. 40, issue 4, No 10, 1873-1898
Abstract:
Abstract Doping control is an essential component of anti-doping organizations for protecting sport competitions. Since 2009, this mission has been complemented worldwide by the Athlete Biological Passport (ABP), used to monitor athletes’ individual profiles over time. The practical implementation of the ABP is based on a Bayesian framework, called ADAPTIVE, intended to identify individual reference ranges outside of which an observation may indicate doping abuse. Currently, this method follows a univariate approach, relying on simultaneous analysis of different markers. This work extends the ADAPTIVE method to a multivariate testing framework, making use of copula models to couple the marginal distribution of biomarkers with their dependence structure. After introducing the proposed copula-based hierarchical model, we discuss our approach to inference, grounded in a Bayesian spirit, and present an extension to multidimensional predictive reference regions. Focusing on the hematological module of the ABP, we evaluate the proposed framework in both data-driven simulations and real data.
Keywords: Anomaly detection; Bayesian hierarchical modeling; Copula models; Highest-density regions; Posterior predictive density; Reference ranges (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-024-01579-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:40:y:2025:i:4:d:10.1007_s00180-024-01579-x
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-024-01579-x
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().