EconPapers    
Economics at your fingertips  
 

Statistical visualisation of tidy and geospatial data in R via kernel smoothing methods in the eks package

Tarn Duong ()

Computational Statistics, 2025, vol. 40, issue 5, No 20, 2825-2847

Abstract: Abstract Kernel smoothers are essential tools for data analysis due to their ability to convey complex statistical information with concise graphical visualisations. Their inclusion in the base distribution and in the many user-contributed add-on packages of the R statistical analysis environment caters well to many practitioners. Though there remain some important gaps for specialised data, most notably for tidy and geospatial data. The proposed eks package fills in these gaps. In addition to kernel density estimation, this package also caters for more complex data analysis situations, such as density derivative estimation, density-based classification (supervised learning) and mean shift clustering (unsupervised learning). We illustrate with experimental data how to obtain and to interpret the statistical visualisations for these kernel smoothing methods.

Keywords: Classification; Clustering; ggplot2; GIS; Kernel density estimation; sf; Tidyverse (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00180-024-01543-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:40:y:2025:i:5:d:10.1007_s00180-024-01543-9

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-024-01543-9

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-06-21
Handle: RePEc:spr:compst:v:40:y:2025:i:5:d:10.1007_s00180-024-01543-9