EconPapers    
Economics at your fingertips  
 

DeepCENT: prediction of censored event time via deep learning

Yichen Jia () and Jong-Hyeon Jeong ()
Additional contact information
Yichen Jia: University of Pittsburgh
Jong-Hyeon Jeong: National Cancer Institute

Computational Statistics, 2025, vol. 40, issue 8, No 19, 4589-4605

Abstract: Abstract With the rapid advances of deep learning, many computational methods have been developed to analyze nonlinear and complex right censored data via deep learning approaches. However, the majority of the methods focus on predicting survival function or hazard function rather than predicting a single valued time to an event. In this paper, we propose a novel method, DeepCENT, to directly predict the individual time to an event. It utilizes the deep learning framework with an innovative loss function that combines the mean square error and the concordance index. Most importantly, DeepCENT can handle competing risks, where one type of event precludes the other types of events from being observed. The validity and advantage of DeepCENT were evaluated using simulation studies and illustrated with three publicly available cancer data sets.

Keywords: Competing risks; Neural networks; Right censoring; Survival analysis; Time to event (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00180-025-01634-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:40:y:2025:i:8:d:10.1007_s00180-025-01634-1

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-025-01634-1

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-10-26
Handle: RePEc:spr:compst:v:40:y:2025:i:8:d:10.1007_s00180-025-01634-1