Effective sample size approximations as entropy measures
L. Martino () and
V. Elvira
Additional contact information
L. Martino: Università degli Studi di Catania
V. Elvira: University of Edinburgh
Computational Statistics, 2025, vol. 40, issue 9, No 21, 5433-5464
Abstract:
Abstract In this work, we analyze alternative effective sample size (ESS) metrics for importance sampling algorithms, and discuss a possible extended range of applications. We show the relationship between the ESS expressions used in the literature and two entropy families, the Rényi and Tsallis entropy. The Rényi entropy is connected to the Huggins-Roy’s ESS family introduced in Huggins and Roy (2015). We prove that that all the ESS functions included in the Huggins-Roy’s family fulfill all the desirable theoretical conditions. We analyzed and remark the connections with several other fields, such as the Hill numbers introduced in ecology, the Gini inequality coefficient employed in economics, and the Gini impurity index used mainly in machine learning, to name a few. Finally, by numerical simulations, we study the performance of different ESS expressions contained in the previous ESS families in terms of approximation of the theoretical ESS definition, and show the application of ESS formulas in a variable selection problem.
Keywords: Effective sample size; Importance sampling; Entropy; Diversity measure; Gini impurity; Gini inequality coefficient; Inverse Simpson concentration; Berger-Parker index (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-025-01665-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:40:y:2025:i:9:d:10.1007_s00180-025-01665-8
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-025-01665-8
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().