Balanced POD for linear PDE robust control computations
John Singler () and
Belinda Batten ()
Computational Optimization and Applications, 2012, vol. 53, issue 1, 227-248
Abstract:
A mathematical model of a physical system is never perfect; therefore, robust control laws are necessary for guaranteed stabilization of the nominal model and also “nearby” systems, including hopefully the actual physical system. We consider the computation of a robust control law for large-scale finite dimensional linear systems and a class of linear distributed parameter systems. The controller is robust with respect to left coprime factor perturbations of the nominal system. We present an algorithm based on balanced proper orthogonal decomposition to compute the nonstandard features of this robust control law. Convergence theory is given, and numerical results are presented for two partial differential equation systems. Copyright Springer Science+Business Media, LLC 2012
Keywords: Robust control; Partial differential equations; Balanced proper orthogonal decomposition; Snapshots; Riccati equations (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-011-9451-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:53:y:2012:i:1:p:227-248
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-011-9451-x
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().