A multi-swarm PSO using charged particles in a partitioned search space for continuous optimization
Abbas El Dor (),
Maurice Clerc () and
Patrick Siarry ()
Computational Optimization and Applications, 2012, vol. 53, issue 1, 295 pages
Abstract:
Particle swarm optimization (PSO) is characterized by a fast convergence, which can lead the algorithms of this class to stagnate in local optima. In this paper, a variant of the standard PSO algorithm is presented, called PSO-2S, based on several initializations in different zones of the search space, using charged particles. This algorithm uses two kinds of swarms, a main one that gathers the best particles of auxiliary ones, initialized several times. The auxiliary swarms are initialized in different areas, then an electrostatic repulsion heuristic is applied in each area to increase its diversity. We analyse the performance of the proposed approach on a testbed made of unimodal and multimodal test functions with and without coordinate rotation and shift. The Lennard-Jones potential problem is also used. The proposed algorithm is compared to several other PSO algorithms on this benchmark. The obtained results show the efficiency of the proposed algorithm. Copyright Springer Science+Business Media, LLC 2012
Keywords: Particle swarm optimization; Tribes-PSO; Global optimization; Multi-swarm; Repulsion heuristic; Partitioned search space (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-011-9449-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:53:y:2012:i:1:p:271-295
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-011-9449-4
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().