EconPapers    
Economics at your fingertips  
 

Relaxed cutting plane method with convexification for solving nonlinear semi-infinite programming problems

Ting-Jang Shiu () and Soon-Yi Wu ()

Computational Optimization and Applications, 2012, vol. 53, issue 1, 113 pages

Abstract: In this paper, we present an algorithm to solve nonlinear semi-infinite programming (NSIP) problems. To deal with the nonlinear constraint, Floudas and Stein (SIAM J. Optim. 18:1187–1208, 2007 ) suggest an adaptive convexification relaxation to approximate the nonlinear constraint function. The αBB method, used widely in global optimization, is applied to construct the convexification relaxation. We then combine the idea of the cutting plane method with the convexification relaxation to propose a new algorithm to solve NSIP problems. With some given tolerances, our algorithm terminates in a finite number of iterations and obtains an approximate stationary point of the NSIP problems. In addition, some NSIP application examples are implemented by the method proposed in this paper, such as the proportional-integral-derivative controller design problem and the nonlinear finite impulse response filter design problem. Based on our numerical experience, we demonstrate that our algorithm enhances the computational speed for solving NSIP problems. Copyright Springer Science+Business Media, LLC 2012

Keywords: Nonlinear semi-infinite programming; Convexification approximation; Cutting plane method; Control design problem (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-011-9452-9 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:53:y:2012:i:1:p:91-113

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-011-9452-9

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:53:y:2012:i:1:p:91-113