Convergence analysis of a proximal Gauss-Newton method
Saverio Salzo () and
Silvia Villa ()
Computational Optimization and Applications, 2012, vol. 53, issue 2, 557-589
Abstract:
An extension of the Gauss-Newton algorithm is proposed to find local minimizers of penalized nonlinear least squares problems, under generalized Lipschitz assumptions. Convergence results of local type are obtained, as well as an estimate of the radius of the convergence ball. Some applications for solving constrained nonlinear equations are discussed and the numerical performance of the method is assessed on some significant test problems. Copyright Springer Science+Business Media, LLC 2012
Keywords: Gauss-Newton method; Penalized nonlinear least squares; Proximity operator; Lipschitz conditions with L average (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-012-9476-9 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:53:y:2012:i:2:p:557-589
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-012-9476-9
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().