Computing the variance of tour costs over the solution space of the TSP in polynomial time
Paul Sutcliffe (),
Andrew Solomon () and
Jenny Edwards ()
Computational Optimization and Applications, 2012, vol. 53, issue 3, 728 pages
Abstract:
We give an O(n 2 ) time algorithm to find the population variance of tour costs over the solution space of the n city symmetric Traveling Salesman Problem (TSP). The algorithm has application in both the stochastic case, where the problem is specified in terms of edge costs which are pairwise independently distributed random variables with known mean and variance, and the numeric edge cost case. We apply this result to provide empirical evidence that, in a range of real world problem sets, the optimal tour cost correlates with a simple function of the mean and variance of tour costs. Copyright Springer Science+Business Media, LLC 2012
Keywords: Traveling salesman problem; Stochastic; Moments; Variance; Statistics; Probabilistic; Landscapes; Hamiltonian cycle (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-012-9472-0 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:53:y:2012:i:3:p:711-728
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-012-9472-0
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().