Computational optimization strategies for the simulation of random media and components
Edoardo Patelli () and
Gerhart Schuëller
Computational Optimization and Applications, 2012, vol. 53, issue 3, 903-931
Abstract:
In this paper efficient computational strategies are presented to speed-up the analysis of random media and components. In particular, a Hybrid Stochastic Optimization (HSO) tool, based on the synergy between various algorithms, i.e. Genetic Algorithms, Simulated Annealing as well as Tabu-list is suggested to reconstruct a set of microstructures starting from probabilistic descriptors. The subsequent analysis (e.g. Finite Element analysis) can be performed to obtain the desired macroscopic quantity of interest and, providing a link between the micro- and the macro-scale. Different computational speed-up strategies are also presented. The proposed simulation approach is highly parallelizable, flexible and scalable. It can be adopted by other fields as well where an optimization analysis is required and a set of different solutions should be identified in order to perform computational experiments. Numerical examples demonstrate the applicability of the proposed strategies for realistic problems. Copyright Springer Science+Business Media, LLC 2012
Keywords: Simulation; Optimization techniques; Parallel computing; Soft computing; Super-elements; Random heterogeneous media (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-012-9463-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:53:y:2012:i:3:p:903-931
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-012-9463-1
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().