A full second order variational model for multiscale texture analysis
Maïtine Bergounioux () and
Loïc Piffet ()
Computational Optimization and Applications, 2013, vol. 54, issue 2, 215-237
Abstract:
We present a second order image decomposition model to perform denoising and texture extraction. We look for the decomposition f=u+v+w where u is a first order term, v a second order term and w the (0 order) remainder term. For highly textured images the model gives a two-scale texture decomposition: u can be viewed as a macro-texture (larger scale) whose oscillations are not too large and w is the micro-texture (very oscillating) that may contain noise. We perform mathematical analysis of the model and give numerical examples. Copyright Springer Science+Business Media, LLC 2013
Keywords: Second order total variation; Image reconstruction; Denoising; Texture analysis; Variational method (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-012-9484-9 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:54:y:2013:i:2:p:215-237
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-012-9484-9
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().