A double smoothing technique for solving unconstrained nondifferentiable convex optimization problems
Radu Boţ () and
Christopher Hendrich ()
Computational Optimization and Applications, 2013, vol. 54, issue 2, 239-262
Abstract:
The aim of this paper is to develop an efficient algorithm for solving a class of unconstrained nondifferentiable convex optimization problems in finite dimensional spaces. To this end we formulate first its Fenchel dual problem and regularize it in two steps into a differentiable strongly convex one with Lipschitz continuous gradient. The doubly regularized dual problem is then solved via a fast gradient method with the aim of accelerating the resulting convergence scheme. The theoretical results are finally applied to an l 1 regularization problem arising in image processing. Copyright Springer Science+Business Media New York 2013
Keywords: Fenchel duality; Regularization; Fast gradient method; Image processing (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-012-9523-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:54:y:2013:i:2:p:239-262
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-012-9523-6
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().