EconPapers    
Economics at your fingertips  
 

Bregman operator splitting with variable stepsize for total variation image reconstruction

Yunmei Chen (), William Hager (), Maryam Yashtini (), Xiaojing Ye () and Hongchao Zhang ()

Computational Optimization and Applications, 2013, vol. 54, issue 2, 317-342

Abstract: This paper develops a Bregman operator splitting algorithm with variable stepsize (BOSVS) for solving problems of the form $\min\{\phi(Bu) +1/2\|Au-f\|_{2}^{2}\}$ , where ϕ may be nonsmooth. The original Bregman Operator Splitting (BOS) algorithm employed a fixed stepsize, while BOSVS uses a line search to achieve better efficiency. These schemes are applicable to total variation (TV)-based image reconstruction. The stepsize rule starts with a Barzilai-Borwein (BB) step, and increases the nominal step until a termination condition is satisfied. The stepsize rule is related to the scheme used in SpaRSA (Sparse Reconstruction by Separable Approximation). Global convergence of the proposed BOSVS algorithm to a solution of the optimization problem is established. BOSVS is compared with other operator splitting schemes using partially parallel magnetic resonance image reconstruction problems. The experimental results indicate that the proposed BOSVS algorithm is more efficient than the BOS algorithm and another split Bregman Barzilai-Borwein algorithm known as SBB. Copyright Springer Science+Business Media New York 2013

Keywords: Total variation image reconstruction; Bregman operator splitting; Barzilai-Borwein stepsize; SpaRSA; Convergence analysis; Magnetic resonance imaging (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-012-9519-2 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:54:y:2013:i:2:p:317-342

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-012-9519-2

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:54:y:2013:i:2:p:317-342