EconPapers    
Economics at your fingertips  
 

On convex quadratic programs with linear complementarity constraints

Lijie Bai (), John Mitchell () and Jong-Shi Pang ()

Computational Optimization and Applications, 2013, vol. 54, issue 3, 517-554

Abstract: The paper shows that the global resolution of a general convex quadratic program with complementarity constraints (QPCC), possibly infeasible or unbounded, can be accomplished in finite time. The method constructs a minmax mixed integer formulation by introducing finitely many binary variables, one for each complementarity constraint. Based on the primal-dual relationship of a pair of convex quadratic programs and on a logical Benders scheme, an extreme ray/point generation procedure is developed, which relies on valid satisfiability constraints for the integer program. To improve this scheme, we propose a two-stage approach wherein the first stage solves the mixed integer quadratic program with pre-set upper bounds on the complementarity variables, and the second stage solves the program outside this bounded region by the Benders scheme. We report computational results with our method. We also investigate the addition of a penalty term y T Dw to the objective function, where y and w are the complementary variables and D is a nonnegative diagonal matrix. The matrix D can be chosen effectively by solving a semidefinite program, ensuring that the objective function remains convex. The addition of the penalty term can often reduce the overall runtime by at least 50 %. We report preliminary computational testing on a QP relaxation method which can be used to obtain better lower bounds from infeasible points; this method could be incorporated into a branching scheme. By combining the penalty method and the QP relaxation method, more than 90 % of the gap can be closed for some QPCC problems. Copyright Springer Science+Business Media, LLC 2013

Keywords: Convex quadratic programming; Logical Benders decomposition; Satisfiability constraints; Semidefinite programming (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-012-9497-4 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:54:y:2013:i:3:p:517-554

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-012-9497-4

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:54:y:2013:i:3:p:517-554