Improved constraint consensus methods for seeking feasibility in nonlinear programs
Laurence Smith (),
John Chinneck () and
Victor Aitken ()
Computational Optimization and Applications, 2013, vol. 54, issue 3, 555-578
Abstract:
The Constraint Consensus method moves quickly from an initial infeasible point to a point that is close to feasibility for a set of nonlinear constraints. It is a useful first step prior to launching an expensive local solver, improving the probability that the local solver will find a solution and the speed with which it is found. The two main ingredients are the method for calculating the feasibility vector for each violated constraint (the estimated vector to the closest point that satisfies the constraint), and the method of combining the feasibility vectors into a single consensus vector that updates the current point. We propose several improvements: (i) a simple new method for calculating the consensus vector, (ii) a predictor-corrector approach to adjusting the consensus vector, (iii) an improved way of selecting the output point, and (iv) ways of selecting subsets of the constraints to operate on at a given iteration. These techniques greatly improve the performance of barrier method local solvers. Quadratic feasibility vectors are also investigated. Empirical results are given for a large set of nonlinear and nonconvex models. Copyright Springer Science+Business Media, LLC 2013
Keywords: Seeking feasibility; Constraint consensus; Heuristics; Nonlinear programming (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-012-9473-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:54:y:2013:i:3:p:555-578
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-012-9473-z
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().