EconPapers    
Economics at your fingertips  
 

Self-adaptive differential evolution incorporating a heuristic mixing of operators

Saber Elsayed (), Ruhul Sarker () and Daryl Essam ()

Computational Optimization and Applications, 2013, vol. 54, issue 3, 790 pages

Abstract: A considerable number of differential evolution variants have been proposed in the last few decades. However, no variant was able to consistently perform over a wide range of test problems. In this paper, propose two novel differential evolution based algorithms are proposed for solving constrained optimization problems. Both algorithms utilize the strengths of multiple mutation and crossover operators. The appropriate mix of the mutation and crossover operators, for any given problem, is determined through an adaptive learning process. In addition, to further accelerate the convergence of the algorithm, a local search technique is applied to a few selected individuals in each generation. The resulting algorithms are named as Self-Adaptive Differential Evolution Incorporating a Heuristic Mixing of Operators. The algorithms have been tested by solving 60 constrained optimization test instances. The results showed that the proposed algorithms have a competitive, if not better, performance in comparison to the-state-of-the-art algorithms. Copyright Springer Science+Business Media, LLC 2013

Keywords: Constrained optimization; Differential evolution; Memetic algorithms (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-012-9493-8 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:54:y:2013:i:3:p:771-790

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-012-9493-8

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:54:y:2013:i:3:p:771-790