A trust region method for solving semidefinite programs
Aiqun Huang () and
Chengxian Xu ()
Computational Optimization and Applications, 2013, vol. 55, issue 1, 49-71
Abstract:
When using interior point methods for solving semidefinite programs (SDP), one needs to solve a system of linear equations at each iteration. For problems of large size, solving the system of linear equations can be very expensive. In this paper, we propose a trust region algorithm for solving SDP problems. At each iteration we perform a number of conjugate gradient iterations, but do not need to solve a system of linear equations. Under mild assumptions, the convergence of this algorithm is established. Numerical examples are given to illustrate the convergence results obtained. Copyright Springer Science+Business Media New York 2013
Keywords: Semidefinite programming; Fréchet derivative; Global convergence; Trust region method (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-012-9514-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:55:y:2013:i:1:p:49-71
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-012-9514-7
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().