A decomposition-based crash-start for stochastic programming
Marco Colombo and
Andreas Grothey ()
Computational Optimization and Applications, 2013, vol. 55, issue 2, 340 pages
Abstract:
In this paper we propose a crash-start technique for interior point methods applicable to multi-stage stochastic programming problems. The main idea is to generate an initial point for the interior point solver by decomposing the barrier problem associated with the deterministic equivalent at the second stage and using a concatenation of the solutions of the subproblems as a warm-starting point for the complete instance. We analyse this scheme and produce theoretical conditions under which the warm-start iterate is successful. We describe the implementation within the OOPS solver and the results of the numerical tests we performed. Copyright Springer Science+Business Media New York 2013
Keywords: Stochastic programming; Interior point methods; Warm-starting (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-012-9530-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:55:y:2013:i:2:p:311-340
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-012-9530-7
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().